元器件知识|学习方法整定电力系统非线性控制器参数

   更新日期:2017-03-25     来源:建材之家    作者:安防之家    浏览:57    评论:0    
核心提示:学习方法整定电力系统非线性控制器参数张采 周孝信 蒋林 吴青华摘要:将迭代学习方法、递增式学习方法引入电力系统可控串补非线性控制器的参数整定,并根据实际电力系统的强非线性和动态过程等特点,将这些学习方法加以改进:将离线迭代学习改进为在线等周期学习,再改进为在线非等周期学习;将离线递增式学习法的定义在连续集上的目标函数变为“点”目标函数,从而可进行在线学习;在此基础上,为了使学习参数在系统遭受大扰动

家用防盗报警器及配件常见故障及解决方法

推荐简介:我们在使用报警器和配件的时候,难免会遇到一些故障,当发生这些故障的时候我们往往不知道是什么原因导致的,如何预防和解决报警器及其配件所产生的故障,成为刻锐安防必须解决的难题之一,下面刻锐小编对平时报警器会产生的一些故障原因及解决办法进行了分析。1、触发探测器,防盗报警主机不能电话报警:排查原因如下:(1)、防盗报警主机未布防。(2)、未设置报警电话号码。(3)、探测器配件安装不当,距离主机太远(配......
安防之家讯:cript>学习方法整定电力系统非线性控制器参数张采 周孝信 蒋林 吴青华将迭代学习方法、递增式学习方法引入电力系统可控串补非线性控制器的参数整定,并根据实际电力系统的强非线性和动态过程等特点,将这些学习方法加以改进:将离线迭代学习改进为在线等周期学习,再改进为在线非等周期学习;将离线递增式学习法的定义在连续集上的目标函数变为“点”目标函数,从而可进行在线学习;在此基础上,为了使学习参数在系统遭受大扰动时有满意的效果,在学习方法中利用了非线性特性。改进后的学习方法高效、简便、实用、易行,为控制器参数的整定提供了新方法。数字仿真结果表明:在同样的计算条件下,非等周期迭代学习方法优于等周期学习方法,递增式学习方法优于非等周期迭代学习方法。控制器采用学习参数将有更好的品质特性,具有较好的动态性能和较强的鲁棒性。
关键词:在线非等周期迭代学习方法;递增学习方法;可控串补非线性控制器;参数整定;鲁棒性
中图分类号:TP181;TM71 文献标识码:A
文章编号:0258-8013(2000)04-0001-05THEADJUSTMENTOFTHEPARAMETERSOFPOWERSYSTEM
NON-LINEARCONTROLLERBYLEARNINGALGRITHMSZHANGCai ZHOUXiao-xin
(ElectricPowerResearchInstituteChian,Beijing100085,China)
JIANGLin WUQing-hua
(DepartmentofElectricalEngineeringandElectronics,TheUniversityofLiverpool,Liverpool,L693GJ,UK)ABSTRACT:Inthispaper,theiterativeandincreasinglearningalgorithmsareintroducedtotheadjustmentoftheparametersofTCSCnonlinearcontrollerinpowersystems.Accordingtothecharacteristicsofpracticalpowersystems,suchasthestrongnonlinearity,dynamicprocessandetc.,thelearningalgorithmsareimproved:theoff-lineiterativelearningisfirstlymodifiedintotheon-lineequalperiodicallearning,andthenintotheon-lineunequalperiodicallearning.Bychangingtheobjectivefunctiondefinedinacontinuoussetintoafunctioninapoint,theincreasinglearningcanbeon-line.Inordertomakethelearningalgorithmsprocesssatisfiedeffectivenessandcanlearnunderlargedisturbancesofthesystem,thenonlinearityofthesystemisusedinthelearningalgorithms.Theimprovedlearningalgorithmsareefficient,simpleandpractical,andprovidenewmethodsfortheadjustmentoftheparametersofthecontroller.Thedigitalsimulationshowsthatunderthesameconditions,theperformanceoftheunequalperiodicallearningalgorithmisbetterthanthatofequalperiodicallearning,theperformanceoftheincreasinglearningalgorithmisbetterthanthatoftheunequalperiodicallearning.Theparametersofthecontrollerfoundbythelearningalgorithmsmakethecontrollerpossessbetterdynamicalperformance,strongadaptabilityandrobustness.
KEYWORDS:on-lineunequalperiodicaliterativelearningalgorithm;increasinglearningalgerithen;TCSCnonlinearcontroller;theadjustmentofparameters;robustness1 引言文[1~3]所设计的输电线路可控串补(TCSC)及其协调非线性控制器较少依赖或不依赖于被控系统的知识,但却具有良好的控制性能和简单的结构。调整好非线性控制器的参数是使控制器有效、可靠地实现其各项性能指标的前提。学习方法可直接设计控制器,也可作为其它设计方法的辅助工具如确定优化控制器参数等。为克服控制器参数整定的困难,本文将学习方法引入电力系统非线性控制器的参数整定,使控制器具有更好的控制特性,为控制器参数的整定提供了新方法。数字仿真结果表明:在几种运行及故障方式下,用学习方法整定的控制器参数具有较好的动态性能、较强的智能性、鲁棒性、容错性等,控制器采用学习参数将有更好的品质特性。2 学习算法G.N.萨里迪斯[4]将学习定义为:一个系统,如果能对一个过程或其环境的未知特征所固有的信息进行学习,并将得到的经验用于进一步的估计、分类、决策或控制,从而使系统的性能得到改善,那么就称该系统为学习系统。
具有学习功能的算法称为学习算法,学习算法有以下几种类型:(1)基于模式识别的学习算法[4]:针对先验知识不完全的对象和环境,将改变量进行分类,确定这种分类的决策,根据不同的决策切换对改变量的作用进行切换选择,通过对对象性能估计来引导学习过程,从而使系统的性能得到改善;(2)基于迭代的学习算法[4、5]:针对一类特定的系统但又不依赖系统的精确模型,通过反复训练的方式进行自学习,使系统逐步逼近期望输出;(3)联结主义学习系统[4、6、7]:具有网络结构的形式(例如人工神经网络),由节点以及节点间的联结弧组成。每个节点可以看作一个简单的处理单元,其中包含若干可调参数。3 学习算法原理3.1 迭代学习法设系统在一时间段[0,T]内以相同起始条件
x(0)=x0重复运行,yd(t)为t∈[0,T]事先给定的期望输出,通过以下重复迭代学习算法得到的控制策略,可使系统在这一时间段的实际输出逼近期望输出[5]:εk(t)=yd(t)-yk(t)(1)uk+1(t)=uk(t)+Dc(t)εk(t)(2)式中 t∈[0,T];uk(t)为第k次训练时的输入;yk(t)为第k次训练时的输出;εk(t)为第k次训练时的误差;Dc(t)为第k次训练时的加权因子。
当k→∝,即训练次数足够多时,可有εk(t)→0。
式(1)(2)为常用的算法,尽管其稳定性和收敛性条件只适合于一定假设下的非线性系统,但算法所体现的基本策略也能形成对模型和外扰不确定的非线性系统的简单学习算法。
在学习控制系统中u可直接表示控制作用,也可表示控制器参数或受控对象模型的参数。因而式(1)(2)可用于待定变量的学习。图1描述了这种方法的迭代结构和过程。图1 迭代学习结构和过程
Fig.1 Thestructureandprocessof
iterativelearningalgorithm3.2 递增式学习法递增式学习由梯度学习法改进而成。设网络在输入的作用下,目标函数为[1][2][3][4]下一页
安防之家专注于各种家居的安防,监控,防盗,安防监控,安防器材,安防设备的新闻资讯和O2O电商导购服务,敬请登陆安防之家:http://anfang.jc68.com/
小程序码
 
打赏
 
更多>文章标签:防盗
更多>同类安防监控资讯
0相关评论

推荐图文更多...
点击排行更多...
安防监控商机更多...
安防监控圈更多...
最新视频更多...
推荐产品更多...
天花之家 | 木门之家 | 灯具之家 | 铁艺之家 | 幕墙之家 | 五金头条 | 楼梯头条 | 墙纸头条 | 壁纸头条 | 玻璃头条 | 老姚之家 | 灯饰之家 | 电气之家 | 全景头条 | 照明之家 | 防水之家 | 防盗之家 | 区快洞察 | 潜江建材 | 仙桃建材 | 恩施建材 | 随州建材 | 咸宁建材 | 黄冈建材 | 荆州建材 | 孝感建材 | 荆门建材 | 鄂州建材 | 襄樊建材 | 宜昌建材 | 十堰建材 | 黄石建材 | 长沙建材 | 湘西建材 | 娄底建材 | 怀化建材 | 永州建材 | 郴州建材 |
建材 | 720全景 | 企业之家 | 移动社区 | 关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图 | 排名推广 | 广告服务 | 积分换礼 | RSS订阅 | sitemap | 粤ICP备14017808号
(c)2015-2017 Bybc.cn SYSTEM All Rights Reserved
Powered by 安防之家